1. On the vector space X, suppose there are two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on it. If these two norms are equivalent, prove that $(X, \|\cdot\|_1)$ is complete if and only if $(X, \|\cdot\|_2)$ is complete.

2. On finite dimensional vector space \mathbb{R}^n , define the norm as

$$||x|| = |x_1| + \dots + |x_n|$$
.

a) Prove that the above defined norm is well-defined. In other words, it satisfies the definition of norm (the properties of norm).

b) Prove that under the above defined norm, $(\mathbb{R}^n, \|\cdot\|)$ is complete. (You can use the following fact without needing to prove it: \mathbb{R} is complete)

Solution:

1.

Proof. As the two norms are equivalent, there exists $0 < \alpha < \beta$, such that

$$\alpha \, \|x\|_2 \le \|x\|_1 \le \beta \, \|x\|_2 \, .$$

It then follows that a sequence x_1, x_2, \cdots is a Cauchy sequence in $(X, |||_1)$ if and only if it is a Cauchy sequence in $(X, |||_1)$, which finishes the proof. The proof is almost routine, we will just verify the triangle inequality here. For $x, y \in \mathbb{R}^n$, we have

$$||x + y|| = |x_1 + y_1| + \dots + |x_n + y_n|$$

$$\leq |x_1| + |y_1| + \dots + |x_n| + |y_n|$$

$$= (|x_1| + \dots + |x_n|) + (|y_1| + \dots + |y_n|)$$

$$= ||x|| + ||y||.$$

b) Sketchy proof: Assume that we have a Cauchy sequence in \mathbb{R}^n , then the 1st coordinates still form a Cauchy sequence in \mathbb{R} . As \mathbb{R} is complete, it must converge to some y_1 . Similary, the k-th coordinates must converge to y_k for all $1 \leq k \leq n$. It then remains to show that (y_1, \dots, y_n) is the desired limit of the original Cauchy sequence in \mathbb{R}^n .

a)